Table of Contents Table of Contents
Previous Page  20 / 82 Next Page
Information
Show Menu
Previous Page 20 / 82 Next Page
Page Background

A D V A N C E D M A T E R I A L S & P R O C E S S E S | F E B R U A R Y / M A R C H 2 0 1 7

2 0

The long-term goal is to discover

reliable phenomenological relation-

ships that relate the time evolving spa-

tial distribution of stress hot spots to

loading conditions, material properties,

and spatial distributions of grain mor-

phology and texture. Initially, the aim

is to predict stress at select points on

grain boundaries from several variables

including grain boundary area, grain

boundary normal relative to shock di-

rection, grain volume, neighbor grain

volume, Taylor factor, difference in

Taylor factor across the grain bound-

ary, and difference in equivalent elas-

tic strain across boundary. An accurate

cross-validated statistical regression

model would provide an understanding

of which mesoscale features are most

important in determining the spatial

distribution of stress hot spots. This

in turn will lead to more well-founded

simulation models to predict macro-

scale behavior of materials under ex-

treme loadings and, eventually, to a

principled understanding of how these

materials fail when subjected to shock.

~AM&P

Formoreinformation:

VeronicaLivescu

is a scientist at Los Alamos National

Laboratory, Materials Science and Tech-

nology Div., MST-8, Los Alamos, NM

87545, 505.667.7537, vlivescu@lanl.

gov,

www.lanl.gov

.

References

1. M.A. Meyers and C.T. Aimone,

Prog.

Matl. Sci.

, Vol 28, p 1-96, 1983.

2. A. Molinari and T.W. Wright,

J. Mech.

Phys. Sol.,

Vol 53, p 1476-1504, 2005.

3. G.T. Gray III and J.C. Huang,

Matl.

Sci. Engr.,

Vol A145, p 21-35, 1991.

4. J.P. Escobedo, et al.,

J. App. Phy.,

110, No. 033513, 2011.

5. V. Livescu, J.F. Bingert, and T.A.

Mason,

Matl. Sci. & Engr. A,

556, p 155-

163, 2012.

6. G.T. Gray III, et al., EPJ Web of Con-

ferences, Vol 94, 02006, 2015.

7. B.M. Schroeter and D.L. McDowell,

Intl. J. of Plas.,

Vol 19, p 1355-1376, 2003.

8. G. Spanos, Foreword:

Scripta Mate-

rialia

Viewpoint Set on 3D Characteri-

zation and Analysis of Materials,

Scripta

Matl.,

55:3.

9. M.D. Uchic,

JOM,

58:24, 2006.

10. M.D. Uchic, et al.,

Scripta Matl.,

55, p

23, 2006.

11. G.S. Rohrer, et al.,

Matl. Sci. & Tech.,

26 (6), 2010.

12. S.E. Dillard, et al., IEEE Trans. on

Visualization and Computer Graphics,

Vol 13, No. 6, 2007.

13. E.P. McLean, et al.,

Rev. Sci. Instrum.,

83, 023701, 2012.

14. J. Bingert, et al.,

Dynamic Behav-

ior of Matls.,

Vol 1, p 397-403, Springer,

2014.

15. M.A. Groeber and M.A. Jackson, In-

tegrating Materials and Manufacturing

Innovation, 3:5, 2014.

16. C.A. Bronkhorst, et al.,

J. App. Phy.,

Vol 119, 085103, 2016.

17. C.A. Bronkhorst, et al., An Exper-

imental and Numerical Study of Lo-

calization Behavior of Tantalum and

Stainless Steel,

Intl. J. of Plas.,

22,

p 1304-1335, 2006.

18. C.A. Bronkhorst, et al., Modeling the

Microstructural Evolution of Metallic

Polycrystalline Materials under Local-

ization Conditions,

J. Mech. & Phy. of

Solids,

55, p 2351-2383, 2007.

LE-133.ps

T:\MISC\ADS\LE-133\LE-133ir.cdr

Thursday, January 19, 2017 1:44:43 PM

Color profile: Disabled